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We have previously discussed the characteristics of the gravitational waves (GW) and
have, theoretically, shown that, like the corresponding electromagnetic (EM) waves,
they also demonstrate, under certain conditions, holographic properties. In this work
we have expanded this discussion and show that the assumed gravitational holographic
images may, theoretically, be related to another property of GW’s which is their possible
relation to singular (or nonsingular) trapped surfaces. We also show that this possibility
may be, theoretically, related even to weak GW’s.

KEY WORDS: gravitational waves; holography; trapped surfaces.

PACS: 42.40.-i, 04.20.Gz, 04.30.-w, 04.30.Nk.

1. INTRODUCTION

It is accepted in the literature that no gravitational wave (GW) (Misner et al.,
1973; Thorne, 1980a,b) passes a spacetime region without leaving its fingerprints
in this region (Brill and Lindquist, 1963; Eppley, 1977; Tipler, 1980; Urtsever,
1988a,b; Beig and Murchadha, 1991; Abrahams and Evans, 1992; Alcubierre
et al., 2000; Gentle et al., 1998; Gentle, 1999; Miyama, 1981). As emphasized
in Urtsever (1988a,b) each GW is characterized by its own intrinsic spacetime
the geometry of which is imprinted upon the passed region in the sense that its
geometry assume the same form as that of the GW. The imprinted geometry may
be either stable for a long time if the relevant GW is strong or transient if it is weak
(Eppley, 1977; Beig and Murchadha, 1991; Abrahams and Evans, 1992; Alcubierre
et al., 2000; Gentle et al., 1998; Gentle, 1999; Miyama, 1981). This geometry is,
theoretically, traced and located in the related trapped surface (Brill and Lindquist,
1963; Eppley, 1977; Abrahams and Evans, 1992; Alcubierre et al., 2000; Gentle
et al., 1998; Gentle, 1999; Miyama, 1981). Among the different kinds of these
surfaces one may find either the singular trapped ones (Eppley, 1977; Tipler,
1980; Urtsever, 1988a,b; Abrahams and Evans, 1992) or the nonsingular ones
(Beig and Murchadha, 1991) which are related to the regular and asymptotically
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flat initial data (Misner et al., 1973; Eppley, 1977; Brill, 1959, 1964; Brill and
Hartle, 1964; Arnowitt et al., 1962; Nakamura, 1984) in vacuum. Both kinds of
these surfaces are related to strong GW’s where, as mentioned, weak ones have
only a transient influence upon spacetime. One may note the extensive numerical
work regarding, especially, the collapse of source-free GW’s in vacuum (Eppley,
1977; Abrahams and Evans, 1992; Alcubierre et al., 2000; Gentle et al., 1998;
Gentle, 1999; Miyama, 1981; Brill, 1959, 1964; Brill and Hartle, 1964; Anninos,
1997) to black holes with the accompanying apparent horizons (Eppley, 1977;
Abrahams and Evans, 1992; Alcubierre et al., 2000; Gentle et al., 1998; Gentle,
1999; Miyama, 1981; Hawking and Ellis, 1973).

In Bar (2005) we have compared the EM theory with the linearized version
of general relativity and have arrived at a possible theory of gravitational wave
holography in which the subject, the reference (Gabor, 1948, 1949, 1951; Collier
et al., 1971) and the reconstructing (Gabor, 1948, 1949, 1951; Collier et al., 1971)
waves are all GW’s. We note that a more thorough comparison between the EM
theory and the linearized version of general relativity has led Kuchar in Kuchar
(1971) to the concept of extrinsic time which is canonically conjugate to spatial
coordinates and not to the energy as is the usual intrinsic time. The basis of the
comparison in Bar (2005) which leads to the assumed holographic properties
for GW’s is the phase difference and the interference which are found to exist
for both EM (Gabor, 1948, 1949, 1951; Collier et al., 1971) and gravitational
(Bar, 2005) plane waves. This may be related to the conclusions in Tipler (1980);
Urtsever (1988a,b) that the collision (corresponds to interference) between two
plane waves results with a strengthening (corresponds to constructive interference)
of them with the consequence of forming a singularity in the related region which
is, generally, surrounded by a surface. Thus, the gravitational holographic image
which is characterized by:

(1) The same spacetime geometry as that of the generating GW (Bar, 2005).
(2) Changing the spacetime curvature in the region containing it relative to neigh-
bouring regions. And (3) is formed from the constructive interference of two
plane waves corresponds to the trapped surface (Eppley, 1977; Hawking and Ellis,
1973) which, likewise, (1) has the same spacetime geometry as that of the forming
GW (Eppley, 1977; Alcubierre et al., 2000; Gentle et al., 1998; Gentle, 1999;
Miyama, 1981). (2) Denotes a change in spacetime curvature in the region which
contains it (Brill and Lindquist, 1963; Eppley, 1977). And (3) results also from
the strengthening collision of two plane waves (Tipler, 1980; Urtsever, 1988a,b).
This correspondence may lead one to adopt for gravitational holography the same
conclusions and methods applied for trapped surfaces, such as, for example, cal-
culating their intrinsic geometry.

We note that although we refer here, as the basis for any linearized discussion
of general relativity, to weak GW’s, which entails only a small transient change
in spacetime curvature (Alcubierre et al., 2000; Gentle et al., 1998; Gentle, 1999;



666 Bar

Miyama, 1981) this small change may, however, persists if the GW which gives
rise to it stays in the related region. This is the same as the optics holograpic images
which are seen only when the reconstructing (reference) wave is sent through the
hologram. That is, there exists a strong correspondence between the (visualized)
material of the optics holographic image which is made from the light of the EM
wave and the material of the gravitational holographic image (trapped surface)
which is related to the mass of the GW. Note that this mass were shown to be
real and positive even for a source-free GW in vacuum (Brill and Lindquist, 1963;
Eppley, 1977) and without it no change in curvature results.

The mentioned trapped surfaces may, in principle, be visualized by drawing
embedding diagrams (Misner et al., 1973; Brill and Lindquist, 1963; Eppley,
1977; Alcubierre et al., 2000; Gentle et al., 1998; Gentle, 1999; Miyama, 1981)
of their geometry. As noted in Eppley (1977) it is a difficult task to embed
the whole trapped surface but one can manage to embed the equatorial plane
especially if it has rotational symmetry such as the initial data of Brill (Eppley,
1977; Alcubierre et al., 2000; Gentle et al., 1998; Gentle, 1999; Miyama,
1981; Brill, 1959, 1964; Brill and Hartle, 1964) or the Kuchar’s cylindrical
ones (Kuchar, 1971). Some embedding methods may be found, for example,
in Brill (1959, 1964); Brill and Hartle (1964) or Eppley (1977). We show here
that the gravitational holographic image, which (1) result from the constructive
interference of plane GW’s (Bar, 2005) and (2) are restricted to small regions
(Bar, 2005), may be regarded as a kind of trapped surface (Brill and Lindquist,
1963; Eppley, 1977). For this purpose we have calculated, using the methods in
Eppley (1977), the geometry of the equatorial plane of the related holographic
image.

In Section 2 we calculate the relevant expressions, such as the metrics, po-
larization and locations of test particles (TP), for the linearized plane GW in the
transverse traceless (TT) gauge (Misner et al., 1973). The mathematical process
(Misner et al., 1973), leading to the calculated locations of TP’s, is introduced,
for completness, in Appendix A. In Section 3 we calculate the relevant inten-
sity, exposure and transmittance for the GW’s which constitute the gravitational
holographic process introduced in Bar (2005). In Section 4 we use the meth-
ods in Eppley (1977) for calculating and introducing the appropriate embedded
trapped surfaces (Eppley, 1977; Brill and Lindquist, 1963) related to the discussed
gravitational holography. The corresponding embedding, resulting under certain
conditions from EM waves, is calculated in Appendix B. As mentioned, the basis
for the assumed gravitational holography was the comparison in Bar (2005) be-
tween EM theory and the linearized version of general relativity. This comparison,
beginning from the initial separate waves and their interference, continuing with
their related intensity, exposure and transmittance and ending with the correspond-
ing trapped surfaces is demonstrated in Table I. We summarize our results with a
Concluding Remarks Section.
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2. THE LINEARIZED PLANE GRAVITATIONAL WAVE

A gravitational wave is known to be characterized (Misner et al., 1973;
Thorne, 1980b) by an oscillating curvature tensor which causes the immediate
neighbourhood of the space-time region through which it pass to correspondingly
oscillate (Misner et al., 1973). An example of such an oscillation is shown in Fig. 1
where a circular array of TP’s changes its form to an elliptic one. If the relevant
region includes the location of any two neighbouring TP’s, which move along
geodesic lines, then the interval between these lines also oscillates. We discuss two
representative TP’s, denoted A and B, each traversing its own geodesic denoted
also by the same A and B. The separation between A and B is denoted by the
vector n. The calculations here, such as the proper locations of B are done with
respect to the proper reference frame of A. That is, the spatial origin xj = 0 is
located on the world line of A and the coordinate time x0 is identical to its proper
time, e.g., x0 = τA. The system is also assumed to be nonrotating and so it may
be considered to be a local Lorentz frame (Misner et al., 1973; Bergmann, 1976)
along the whole world line of A and not just at one event of it. As mentioned, we
discuss here weak GW’s and the corresponding linearized theory of gravitation.

The passing GW causes periodic changes of the array of test points from circular to elliptic form

n2n2+
e

n2n1n1n1
Phasex+

ee

2n*180 degrees

(2n+1/2)*180 degrees

(2n+1)*180 degrees

(2n+3/2)*180 degrees

Fig. 1. A schematic representation of the influence of a passing plane GW upon a circular array
of test particles which periodically changes its form to elliptic array. The first column at the left
shows the influence of the unit polarization tensor e+n̂1 n̂1

, the middle column shows that of the unit
polarization tensor e+n̂2 n̂2

and the right column represents e×n̂1 n̂2
. Note that e+n̂1 n̂1

= −e+n̂2 n̂2
.
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Thus, one may write the metric tensor as

gµν = ηµν + hµν + O(hµν)2, (1)

where ηµν is the Lorentz metric tensor (Misner et al., 1973; Bergmann, 1976)
and hµν is a small metric perturbation which, as emphasized in Misner et al.
(1973), denotes also the passing GW which is itself a traveling perturbation
in spacetime (Misner et al., 1973; Thorne, 1980b). The metric, therefore, is
(Misner et al., 1973)

ds2 = −dx02 + δjk dxjdxk + O(|xj |2) dxαdxβ. (2)

We use the transverse-traceless (TT) gauge (Misner et al., 1973; Thorne,
1980b) in which the tensor hµν is considerably simplified and reduces to a mini-
mum number of components (Misner et al., 1973). In this gauge the components
of the metric tensor satisfy (1) hT T

µ0 = 0, that is, any component of the metric
tensor, except the spatial ones, vanishes, (2) hT T

kj,j = 0, so that these components
are divergence-free and (3) are also trace-free, e.g., hT T

kk = 0. Thus, since, as
mentioned, the gravitational wave is the same as hT T

jk it, naturally, has the same
properties.

The relevant calculations for the changed location (due to the passing GW) of
B relative toA are introduced in Misner et al. (1973) and repeated, for completness,
in Appendix A. The expression for this location is

x
j

B(τ ) = xk
B(0)

(
δjk + 1

2
hT T

jk

)
atA

(3)

In the following we refer to a plane monochromatic gravitational wave ad-
vancing in the general n̂ direction where the TP’s A and B and the geodesics
along which they propagate lie in the plane perpendicular to n̂. Denoting the two
perpendicular directions to n̂ by en̂1 , en̂2 and comparing the polarization of the
GW to that of the EM waves one may realize (Misner et al., 1973) that to the unit
polarization vectors en̂1 and en̂2 of the electromagnetic linearly polarized wave,
which propagates in the n̂ direction, there correspond the following gravitational
unit linear-polarization tensors

e+n̂1 n̂1
= en̂1 ⊗ en̂1 − en̂2 ⊗ en̂2 = −(en̂2 ⊗ en̂2 − en̂1 ⊗ en̂1 ) = −e+n̂2 n̂2

e×n̂1 n̂2
= en̂1 ⊗ en̂2 + en̂2 ⊗ en̂1 = (en̂2 ⊗ en̂1 + en̂1 ⊗ en̂2 ) = e×n̂2 n̂1

, (4)

where ⊗ denotes the tensor product. In the following we denote by r the position
vector of a point in space and its components by r1, r2, r3. Thus, taking into
account, as mentioned after Eq. (2), that in the T T gauge the following constraints
hold hT T

µ0 = 0, hT T
ij,j = 0, hT T

kk = 0 one realizes, using Eq. (4), that, for the GW
propagating in the n̂ direction, the only nonzero components which remain are
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(Misner et al., 1973)

hT T
+n̂1 n̂1

= �(A+e+n̂1 n̂1
e−if t eikrn̂)

= A+e+n̂1 n̂1
× cos(k(r1 cos(α) + r2 cos(β) + r3 cos(η)) − f t)

= −hT T
+n̂2 n̂2

= −�(A+e+n̂2 n̂2
e−if t eikrn̂) (5)

= −A+e+n̂2 n̂2
× cos(k(r1 cos(α) + r2 cos(β) + r3 cos(η)) − f t)

hT T
×n̂1 n̂2

= �(A×e×n̂1 n̂2
e−if t eikrn̂)

= A×e×n̂1 n̂2
× cos(k(r1 cos(α) + r2 cos(β) + r3 cos(η)) − f t)

= hT T
×n̂2 n̂1

= �(A×e×n̂2 n̂1
e−if t eikrn̂) (6)

= A×e×n̂2 n̂1
× cos(k(r1 cos(α) + r2 cos(β) + r3 cos(η)) − f t)

where � denotes the real parts of the expressions which follow. The amplitudes
A+ and A× are related, respectively, to the two independent modes of polarization
e+n̂1 n̂1

(= −e+n̂2 n̂2
) and e×n̂1 n̂2

(= e×n̂2 n̂1
), k is 2π

λ
, f is the time frequency, and

cos(α), cos(β), cos(η) are the direction cosines of n̂. Thus, one may write the
perturbation hT T

jk , resulting from the passing GW, as

hT T
jk = hT T

+jk
+ hT T

×jk
= �((A+e+jk

+ A×e×jk
)e−if t eikrn̂)

= (A+e+jk
+ A×e×jk

) cos(k(r1 cos(α) (7)

+ r2 cos(β) + r3 cos(η)) − f t)

The effect of the perturbation upon the interval between two TP’s may best
be understood by considering a large number of TP’s B which form a closed ring
around the TP A in the center. The effect of the passing wave with either e+ or e×
polarization upon the ring is shown in Fig. 1. From this figure one may realize that
circular array of the TP’s B is periodically changed by the passing plane GW to
elliptic one. These periodic changes depend upon the phase of the GW as shown in
the figure. Since we discuss here several different GW’s such as the subject and the
reference ones we denote these waves by the appropriate suffixes S (for subject)
and R (for reference). Substituting from Eq. (7) into Eq. (A.11) of Appendix A,
which gives the change in the spatial interval between the TP’s A and B due to
the passing subject GW, one obtains for j = n1

x
n̂1
BS

=
{
x

n̂1
B(0)S

+ 1

2

(
A+e+n̂1 n̂1

x
n̂1
B(0)S

+ A×e×n̂1 n̂2
x

n̂2
B(0)S

)
(8)

× cos(k(x cos(α) + y cos(β) + z cos(η)
) − f t)}atA
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And for j = n2 one obtains

x
n̂2
BS

=
{
x

n̂2
B(0)S

+ 1

2

(
A×e×n̂2 n̂1

x
n̂1
B(0)S

+ A+e+n̂2 n̂2
x

n̂2
B(0)S

)

× cos(k(x cos(α) + y cos(β) + z cos(η)) − f t)}atA (9)

Denoting the cosine expression cos(k(x cos(α) + y cos(β) + z cos(η)) − f t)
by D one may realize from the last two equations that the location of the TP’s
B has been changed, due to the passage of the GW, from the initial value of
(x n̂1

B(0)S
+ x

n̂2
B(0)S

) to the final one of

x n̂
BS

= x
n̂1
B(0)S

(
1 + D

2

(
A+e+n̂1 n̂1

+ A×e×n̂2 n̂1

))

+ x
n̂2
B(0)S

(
1 + D

2

(
A+e+n̂2 n̂2

+ A×e×n̂1 n̂2

)) = (
x

n̂1
B(0)S

+ x
n̂2
B(0)S

)
(10)

×
(

1 + DA×e×n̂1 n̂2

2

)
+ (

x
n̂1
B(0)S

− x
n̂2
B(0)S

)DA+e+n̂1 n̂1

2
,

where the last result was obtained from the first of Eq. (4). One may see from

Eq. (10) that the change in the location of B due to the subject GW amounts
to

	x n̂
BS

= (
x

n̂1
B(0)S

+ x
n̂2
B(0)S

)DA×e×n̂1 n̂2

2
+ (

x
n̂1
B(0)S

− x
n̂2
B(0)S

)DA+e+n̂1 n̂1

2
(11)

As shown (Bar, 2005) this change is added to a similar change due to a
second GW which constructively interfere with the former GW. The resulting sum
is imprinted in spacetime in the sense that a circular array of TP’s is changed
to an elliptic one. The theory of this interference and the resulting gravitational
holographic image has been detaily described in Bar (2005) and we introduce in
the following section the results obtained there.

3. THE GRAVITATIONAL INTENSITY, EXPOSURE
AND TRANSMITTANCE

The reference wave denoted by the suffix R may be given, as done in Bar
(2005), by an expression similar to Eq. (7) and the change in the location of the TP
B due to its passage may, likewise, be written in a form similar to Eqs. (8)–(11).
Thus, using Eq. (7) and the expression (Bar, 2005) for the intensity of GW, one
may write the intensity of the total wave resulting from the interference of the
subject and reference waves as

I(S+R)jk
=

(
hT T

+Sjk
+ hT T

×Sjk

)(
hT T

+Sjk
+ hT T

×Sjk

)∗
+

(
hT T

+Rjk
+ hT T

×Rjk

)
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×
(
hT T

+Rjk
+ hT T

×Rjk

)∗
+

〈(
hT T

+Sjk
+ hT T

×Sjk

)(
hT T

+Rjk
+ hT T

×Rjk

)∗
(12)

+
(
hT T

+Sjk
+ hT T

×Sjk

)∗(
hT T

+Rjk
+ hT T

×Rjk

)〉
,

where the asteric denotes the conjugate part of the relevant complex expressions.
In the following we append to A+, A×, e+, e×, r, n the suffixes S and R to
differentiate between the subject and reference GW’s. Thus, we use (Misner
et al., 1973; Bar, 2005) for the subject and reference GW’s the following ex-
pressions; hT T

+Sjk
= A+S

e+Sjk
e−ifS t eikrS n̂S , hT T

×Sjk
= A×S

e×Sjk
e−ifS t eikrS n̂S , hT T

+Rjk
=

A+R
e+Rjk

e−ifRt eikrR n̂R , hT T
×Rjk

= A×R
e×Rjk

e−ifRt eikrR n̂R . Assuming, as generally

done in optics holography, the same frequency fS = fR = f for the subject and
reference GW’s one obtains for the average factors in the third average term in
Eq. (12) limT →∞ 1

2T

∫ T

−T
ei(fR−fS )t dt = limT →∞ 1

2T

∫ T

−T
dt = 1. Thus, one may

write Eq. (12) as

I(S+R)jk
= (A+S

e+Sjk
+ A×S

e×Sjk
)(A+S

e+Sjk
+ A×S

e×Sjk
)∗

+ (A+R
e+Rjk

+ A×R
e×Rjk

)(A+R
e+Rjk

+ A×R
e×Rjk

)∗

+ 2(A+S
e+Sjk

+ A×S
e×Sjk

)(A+R
e+Rjk

+ A×R
e×Rjk

)

× cos(ik(rSnS − rRnR)), (13)

where the trigonometric identity eik(rSnS−rRnR ) + e−ik(rSnS−rRnR ) =
2 cos(k(rSnS − rRnR)) is used. One may realize from Eq. (13) that for
cos(k(rRnR − rSnS)) = 0 there is no interference at all between the GW’s
hT T

+Sjk
, hT T

×Sjk
and hT T

+Rjk
, hT T

×Rjk
and the total intensity I(S+R)jk

is the addition of the

separate intensities ISjk
and IRjk

. That is, for (k(rSnS − rRnR)) = Nπ
2 where N

are the uneven numbers N = 1, 3, 5 . . . one obtains

I(S+R)jk(cos(k(rS nS−rRnR ))=0)
= (A+S

e+Sjk
+ A×S

e×Sjk
)(A+S

e+Sjk
+ A×S

e×Sjk
)∗

+ (A+R
e+Rjk

+ A×R
e×Rjk

)(A+R
e+Rjk

+ A×R
e×Rjk

)∗

(14)

For cos(k(rSnS − rRnR)) �= 0 the interference between the GW’s hT T
+Sjk

, hT T
×Sjk

and hT T
+Rjk

, hT T
×Rjk

does not vanish and the intensity I(S+R)jk
depends upon

the value of cos(k(rS n̂S − rRn̂R)). Thus, for cos(k(rRnR − rSnS)) = ±1 one
have

I(S+R)jk(cos(k(rS n̂S−rR n̂R ))=±1)
= [((A+S

e+Sjk
+ A×S

e×Sjk
)

± (A+R
e+Rjk

+ A×R
e×Rjk

)]2, (15)
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where the + sign between the two terms at the right corresponds to cos(k(rS n̂S −
rRn̂R)) = 1 and the − sign to cos(k(rS n̂S − rRn̂R)) = −1. Equation (15) may
be used in conjunction with Fig. 1 to differentiate between constructive and de-
structive interference. We first take into account that for constructive interference
the GW’s hT T

+Sjk
, hT T

+Rjk
and hT T

×Sjk
, hT T

×Rjk
must have approximately the same unit

polarization tensors, e.g., e+Sjk
≈ e+Rjk

, e×Sjk
≈ e×Rjk

and for destructive inter-
ference these GW’s must have approximately opposite unit polarization tensors,
e.g., e+Sjk

≈ −e+Rjk
, e×Sjk

≈ −e×Rjk
.

Thus, one may realize that the first case of approximate similar po-
larization for the GW’s hT T

+Sjk
, hT T

×Sjk
and hT T

+Rjk
, hT T

×Rjk
must corresponds to

cos(k(rS n̂S − rRn̂R)) = 1 and the second case of approximate opposite polar-
ization for these GW’s corresponds to cos(k(rS n̂S − rRn̂R)) = −1. This may
also be realized by using the trigonometric identity cos(k(rS n̂S − rRn̂R)) =
cos(krS n̂S) cos(krRn̂R) + sin(krS n̂S) sin(krRn̂R) from which one may conclude
that for cos(k(rS n̂S − rRn̂R)) = 1 the angles krS n̂S and krRn̂R respectively re-
lated to the subject and reference GW’s should be approximately the same or
differ by 2πn, where n = 0, ±1, ±2,±3 . . .. The latter relations between the
angles krS n̂S and krRn̂R means that the polarizations of the corresponding GW’s
are the same and, therefore, constructively interfere. In a similar manner one may
realize that for cos(k(rS n̂S − rRn̂R)) = −1 the former angles should be separated
from each other by (2n + 1)π , where n = 0, ±1, ±2, ±3 . . . which means that
the corresponding polarizations of these waves are opposite to each other and,
therefore, destructively interfere. Thus, since as just mentioned the two cases
of cos(k(rS n̂S − rRn̂R)) = 1 and cos(k(rS n̂S − rRn̂R)) = −1 respectively corre-
spond to the same (costructive interference) and opposite (destructive interference)
polarizations for the GW’s hT T

+Sjk
, hT T

×Sjk
and hT T

+Rjk
, hT T

×Rjk
one may rewrite Eq. (15)

as

I(S+R)jk(cos(k(rS n̂S−rR n̂R ))=±1
= (e+Sjk

(A+S
± A+R

) + e×Sjk
(A×S

± A×R
))2 (16)

For further substantiating the former discussion we refer to Fig. 1 and,
therefore, we particularize the general indices j and k and assume, for exam-
ple, j = k = n̂1. We also denote the horizontal and vertical axes in Fig. 1 by n̂1

and n̂2 respectively. Thus, for j = k = n̂1 and cos(k(rS n̂S − rRn̂R)) = 1 Eq. (16)
becomes

I(S+R)n̂1 n̂1(cos(k(rS n̂S−rR n̂R ))=1) = (e+Sn̂1 n̂1
(A+S

+ A+R
))2

= ((en̂1 ⊗ en̂1 − en̂2 ⊗ en̂2 )(A+S
+ A+R

))2, (17)

where we use the first of Eqs. (4). From the last equation one may realize that the
unit polarization tensors e+Sn̂1 n̂1

and e+Rn̂1 n̂1
are similar to each other which means

that the GW’s hT T
+Rn̂1 n̂1

and hT T
+Sn̂1 n̂1

act in identical manner upon the ensemble of
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TP’s B which is to turn it from a circular form to an elliptic one so that they are
constructively interfering together.

In a similar manner one may discuss the case of cos(k(rS n̂S − rRn̂R)) = −1
so that for j = k = n̂1 Eq. (16) may be rewritten as

I(S+R)n̂1 n̂1(cos(k(rS n̂S−rR n̂R ))=−1) = (e+Sn̂1 n̂1
(A+S

− A+R
))2

= ((en̂1 ⊗ en̂1 − en̂2 ⊗ en̂2 )(A+S
− A+R

))2, (18)

where we again use the first of Eqs. (4). From the last equation one may realize
that, as mentioned, the unit polarization tensors e+Sn̂1 n̂1

and e+Rn̂1 n̂1
are opposite to

each other. That is, the GW’s hT T
+Sn̂1 n̂1

and hT T
+Rn̂1 n̂1

act in contradicting manner upon

the ensemble of TP’s B so that, for A+S
≈ A+R

, the resulting action is almost null
which means that they are destructively interfering with each other.

When, however, the general indices jk are particularized to j = n̂1 and
k = n̂2 then one may follow the former discussion and conclude that for
cos(k(rS n̂S − rRn̂R)) = 1 the polarization tensors e×Sn̂1 n̂2

, e×Rn̂1 n̂2
of the respective

GW’s hT T
×Sn̂1 n̂2

, hT T
×Rn̂1 n̂2

are similar to each other. Thus, Eq. (16) may be rewritten

in this case as

I(S+R)n̂1 n̂2(cos(k(rS n̂S−rR n̂R ))=1) = (e×Sn̂1 n̂2
(A×S

+ A×R
))2

= ((en̂1 ⊗ en̂2 + en̂2 ⊗ en̂1 )(A×S
+ A×R

))2, (19)

where we use the second of Eqs. (4). As seen from the last equation the unit
polarization tensors e×Sn̂1 n̂2

and e×Rn̂1 n̂2
are similar to each other which means that

the GW’s hT T
×Sn̂1 n̂2

and hT T
×Rn̂1 n̂2

act in identical manner upon the ensemble of TP’s

B which, as seen from Fig. 1, is composed of; (1) turning it from a circular form
to an elliptic one and (2) rotating it by 45 degrees so that they are constructively
interfering together. The case of cos(k(rS n̂S − rRn̂R)) = −1 may also be dis-
cussed in a similar manner so that for j = n̂1, k = n̂2 Eq. (16) may be rewritten
as

I(S+R)n̂1 n̂2(cos(k(rS n̂S−rR n̂R ))=−1) = (e×Sn̂1 n̂2
(A×S

− A×R
))2

= ((en̂1 ⊗ en̂2 + en̂2 ⊗ en̂1 )(A×S
− A×R

))2, (20)

where we again use the second of Eqs. (4). As realized from the last equation the
unit polarization tensors e×Sn̂1 n̂2

and e×Rn̂1 n̂2
are opposite to each other. That is, the

GW’s hT T
×Sn̂1 n̂2

and hT T
×Rn̂1 n̂2

act in contradicting manner upon the ensemble of TP’s

B so that, for A×S
≈ A×R

the resulting action is almost null which means that they
are destructively interfering with each other.
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As for the gravitational hologram we may understand its nature, as empha-
sized in Bar (2005), from the known corresponding holograms used in optics
holography. The latter are prepared (Gabor, 1948, 1949, 1951; Collier et al., 1971)
so as to efficiently record the initial constructive interference of the subject and
reference waves so that directing later the reference wave upon its surface results
in reconstructing the initial subject wave (Gabor, 1948, 1949, 1951; Collier et al.,
1971).

A great simplification of the recording process is obtained in optics hologra-
phy, as done in Collier et al. (1971), when one discusses a small area holograms
in which case one may assume a linear recording process (Collier et al., 1971).
This process is also used in Bar (2005) for the gravitational case and were the-
oretically shown that one may reconstruct the initial subject gravitational wave.
That is, as shown in Bar (2005), the imprinted spacetime of the subject GW
hT T

Sjk
= hT T

+Sjk
+ hT T

×Sjk
upon the small region A (see Fig. 2) becomes effective in the

sense that if a reconstructing GW, which should be identical to the original refer-
ence wave, passes through this region the effect is to cause a contraction of A along
some axis and elongation along another as shown in Fig. 1. This is the meaning
by which gravitational holographic images should be understood. In other words,
assuming as in optics holography (Gabor, 1948, 1949, 1951; Collier et al., 1971),
that the spacetime region exposed to the interfering subject and reference GW’s
acquires some transmittance tT T

E which depends upon this exposure E one may
suppose the following:

(1) the exposure E is proportional to the intensity IS+R from Eq. (13) so
that E = kIS+Rτe where τE is the exposure time and k a proportionality
constant.

(2) the exposure E may be written as a sum E(r) = E0 + E1(r) of a constant
term E0 and a space dependent one E1(r) where the restriction to the small
region A enables one to sustain the inequality E1(r) < E0 over A.

(3) Using (2) one may write the transmittance tT T
E over A as a Taylor series

in which the coefficients of the second and higher order terms may be
neglected. That is

tT T
E = tT T

(
ET T

0

) + ET T
1

dtE
dE

∣∣∣∣
ET T

0

+ 1

2

(
ET T

1

)2 d2tE
dE2

∣∣∣∣
ET T

0

+ · · · , (21)

where d2tE
dE2 |ET T

0
≈ d3tE

dE3 |ET T
0

≈≈ ....0. Thus, as for optics hologram (Gabor,
1948, 1949, 1951; Collier et al., 1971) and as shown in Bar (2005), for
reconstructing the subject wave hT T

Sjk
one should send through A a recon-

structing GW, which is identical to the reference wave hT T
Rjk

, so that using
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Fig. 2. The constructive interference process of the subject and reference waves over the small
region A shown in the middle of the figure. Other small regions, denoted F and E are shown higher
and lower than A. The lines, representing the GW’s which proceed to these regions are shown in
dashed forms.

(1)–(3) and Eq. (21) one obtains

W = hT T
Rjk

tT T
E = hT T

Rjk
ET T

1 (r)
dtE
dE

∣∣∣∣
ET T

0

= CT T · hT T
Sjk

, (22)

where CT T is a proportionality constant. In Table I we have outlined
and followed the whole gravitational holographic process from the ini-
tial separate subject and reference GW’s until the final formed trapped
surface. Since, as mentioned, this process is based upon the comparison
done in Bar (2005) between the optical holographic theory (Gabor, 1948,
1949, 1951; Collier et al., 1971) and the linearized version of general
relativity (Misner et al., 1973; Thorne, 1980b) we have also described
in Table I the corresponding optics holographic process. Thus, one may
see in this table side by side the corresponding expressions for the two
processes.

We should note here that unlike the EM field which may, experimentally, be
traced and located in any region in space however small it is the gravitational field
can not be located (Misner et al., 1973) in such a manner. That is, as emphasized
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in Misner et al. (1973) (see p. 955 in Misner et al. (1973)), “the stress-energy
carried by gravitational waves can not be localized inside a wavelength etc.
However, one can say that a certain amount of stress-energy is contained in a
given ‘macroscopic’ region.” That is, the gravitational wave formalism is applied
for averages over several wavelengths. However, as mentioned, for very small
wavelength, which is the limit discussed here, not only this formalism is valid but
also the comparison between it and the EM one.

4. CALCULATION OF THE EMBEDDED SURFACE

As mentioned, the holographic image over A have a spacetime geometry
which is the same as the spacetime geometry of the subject GW hT T

Sjk
. We have

also mentioned that the spacetime geometry of the trapped surface is the same as
that of the GW which gives rise to it (Eppley, 1977; Brill, 1959, 1964; Brill and
Hartle, 1964). This similarity between the holographic images and trapped surface
lead us to suppose that, theoretically, they are similar entities. Thus, one may be
tempted to use the known embedding methods (Eppley, 1977; Brill, 1959, 1964;
Brill and Hartle, 1964) of calculating the geometry of trapped surfaces for finding
the geometry of the gravitational holographic images. Now, since the embedding
of the calculated geometry is into the Euclidean space (Eppley, 1977) we have
first to convert the tensor metric components hT T

n̂1n̂1
= −hT T

n̂2n̂2
, hT T

n̂1n̂2
= hT T

n̂2n̂1
from

Eqs. (5) and (6), which were calculated in the n̂, n̂1, n̂2 system, into the x̂, ŷ, ẑ
Euclidean system. That is, substituting n̂ = ẑ, n̂1 = x̂, n̂2 = ŷ, r = x̂x + ŷy + ẑz
one may write the Euclidean metric components as

hT T
x̂x̂ = �(

A+e+x̂x̂e
−if t eikrẑ) = A+e+x̂x̂ · cos(kz − f t)

= −hT T
ŷŷ = −�(

A+e+ŷŷe
−if t eikrẑ) = −A+e+ŷŷ · cos(kz − f t)

hT T
x̂ŷ = �(

A×e×x̂ŷe
−if t eikrẑ) = A×e×x̂ŷ · cos(kz − f t) (23)

= hT T
ŷx̂ = �(

A×e×ŷx̂e
−if t eikrẑ) = A×e×ŷx̂ · cos(kz − f t),

where e+x̂x̂ , e+ŷŷ , e×x̂ŷ are the Euclidean unit linear-polarization tensors given
by Eqs. (4) in which we substitute n̂ = ẑ, n̂1 = x̂, n̂2 = ŷ. Thus, using the last
equations and the discussion after Eq. (2) one may write the metric from Eq. (2)
in the TT gauge as

(dsT T )2
(x̂,ŷ,ẑ)= hT T

x̂x̂ dx2 + hT T
ŷŷ dy2 + 2hT T

x̂ŷ dx dy = A+e+x̂x̂ · cos(kz − f t) dx2

+A+e+ŷŷ · cos(kz − f t)dy2 + 2A×e×x̂ŷ · cos(kz − f t) dx dy (24)

= A+e+x̂x̂ · cos(kz − f t)(dx2 − dy2) + 2A×e×x̂ŷ · cos(kz − f t) dx dy,
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where the last result was obtained by using e+x̂x̂ = −e+ŷŷ (see the first of Eqs.
(4)). In order to calculate the embedded surface of the holographic image we first
express the metric from Eq. (24) in the cylindrical coordinates (ρ̂, φ̂, ẑ) where
x = ρ cos(φ), y = ρ sin(φ), z = z so that

(dsT T )2
(ρ̂,φ̂,ẑ) = hT T

ρ̂ρ̂ dρ2 + hT T

φ̂φ̂
dφ2 + hT T

ρ̂φ̂
dρ dφ

= A+e+ρ̂ρ̂
· cos(kz − f t)(cos(2φ)(dρ2 − ρ2dφ2)

− 2ρ sin(2φ) dρ dφ) + A×e×ρ̂φ̂
(25)

× cos(kz − f t)(sin(2φ)(dρ2 − ρ2dφ2) + 2ρ cos(2φ) dρ dφ),

where the following trigonometric relations were used (cos2(φ) − sin2(φ)) =
cos(2φ), 2 sin(φ) cos(φ) = sin(2φ). We have also transformed from the carte-
sian unit polarization tensors e+x̂x̂ , e+x̂y to the corresponding cylindrical ones
e+ρ̂ρ̂

, e+ρ̂φ̂
by using:

(1) The unit polarization tensors in the (ex̂, eŷ, eẑ) system e+x̂x̂ = ex̂ ⊗ ex̂ −
eŷ ⊗ eŷ = −e+ŷŷ , e×x̂ŷ = ex̂ ⊗ eŷ + eŷ ⊗ ex̂ = e×ŷx̂ (see Eqs. (4)).

(2) The transformation relations from the (ex̂ , eŷ , eẑ) coordinate system to the
cylindrical one (eρ̂ , eφ̂ , eẑ) (Spiegel, 1959)

ex̂ = cos(φ)eρ̂ − sin(φ)eφ̂ , eŷ = sin(φ)eρ̂ + cos(φ)eφ̂ , eẑ = eẑ,

and (3) the triginometric identities (cos2(φ) − sin2(φ)) = cos(2φ),
2 cos(φ) sin(φ) = sin(2φ). Thus, the cylindrical unit polarization tensors
e+ρ̂ρ̂

, e+ρ̂φ̂
in Eq. (25) are, respectively, given by

e+ρ̂ρ̂
= cos(2φ)(eρ̂ ⊗ eρ̂ − eφ̂ ⊗ eφ̂) − sin(2φ)(eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂)

e×ρ̂φ̂
= sin(2φ)(eρ̂ ⊗ eρ̂ − eφ̂ ⊗ eφ̂) + cos(2φ)(eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂) (26)

We assume here, as in Brill and Lindquist (1963); Eppley (1977), a no-
rotation case so that hT T

ρ̂φ̂
is identically zero. Thus, removing from Eq. (25) the

dρdφ part one obtains

(dsT T )2
(ρ̂,φ̂,ẑ) = hT T

ρ̂ρ̂ d2ρ + hT T

φ̂φ̂
d2φ (27)

= cos(kz − f t)(A+e+ρ̂ρ̂
cos(2φ) + A×e×ρ̂φ̂

sin(2φ))((dρ2 − ρ2dφ2))

We, now, find the embedding of the holographic image and begin by assuming,
as for the trapped surfaces discussed in Eppley (1977), that its metric in the small
surface A (see Fig. 2) is that of a surface of rotation z(x, y) related to Euclidean
space. That is, one may write

x = a(ρ) cos(φ), y = a(ρ) sin(φ), z = b(ρ) (28)
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Thus, using the expressions for hT T
ρ̂ρ̂ and hT T

φ̂φ̂
from Eq. (27) one may write

the metric of the holographic image as

ds2 = dx2 + dy2 + dz2 = (a2(ρ)ρ + b2(ρ)ρ) dρ2 + a2(ρ) dφ2

= hT T
ρ̂ρ̂ d2ρ + hT T

φ̂φ̂
d2φ = cos(kz − f t)(A+e+ρ̂ρ̂

cos(2φ) + A×e×ρ̂φ̂
sin(2φ))

× (dρ2 − ρ2dφ2) = cos(kz − f t)

[
sin(4φ)

2
(A× − A+)

(
eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂

)

+(A+ cos2(2φ) + A× sin2(2φ))(eρ̂ ⊗ eρ̂ − eφ̂ ⊗ eφ̂)

] (
d2ρ − ρ2dφ2) (29)

where aρ(ρ), bρ(ρ) denote the first derivatives of a, b with respect to ρ and the last
result is obtained by substituting from Eq. (26) for e×ρ̂φ̂

, e+ρ̂ρ̂
. Note that when the

amplitudes A×, A+ are equal the expression (A+e+ρ̂ρ̂
cos(2φ) + A×e×ρ̂φ̂

sin(2φ))
is considerably simplified and becomes

(A+e+ρ̂ρ̂
cos(2φ) + A×e×ρ̂φ̂

sin(2φ)) = A+(eρ̂ ⊗ eρ̂ − eφ̂ ⊗ eφ̂)

The quantities a(ρ), aρ(ρ) and b(ρ) which defines the intrinsic geometry of
the holographic image upon the small area A are determined from Eq. (29) as

a(ρ) = ρ

[
cos(kz − f t)

{
sin(4φ)

2
(A+ − A×)

(
eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂

)

+ (
A+ cos2(2φ) + A× sin2(2φ)

)
(eφ̂ ⊗ eφ̂ − eρ̂ ⊗ eρ̂)

}] 1
2

a(ρ)ρ =
[

cos(kz − f t)

{
sin(4φ)

2
(A+ − A×)

(
eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂

)

+ (
A+ cos2(2φ) + A× sin2(2φ)

)
(eφ̂ ⊗ eφ̂ − eρ̂ ⊗ eρ̂)

}] 1
2

(30)

b(ρ) =
∫

dρ

[
cos(kz − f t)

{
sin(4φ)

2
(A× − A+)

(
eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂

)

+ (
A+ cos2(2φ) + A× sin2(2φ)

)
(eρ̂ ⊗ eρ̂ − eφ̂ ⊗ eφ̂)} − a2(ρ)ρ

] 1
2
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Note that the geometry of the small surface A determined from the former
quantities a(ρ), a(ρ)ρ , b(ρ) is that of the subject GW hT T

Sρ̂,φ̂,ẑ
.

5. CONCLUDING REMARKS

We have continued and expanded our former discussion (Bar, 2005) regarding
the holographic properties of the GW’s which, theoretically, results from a com-
parison between optics holography and the linearized version of general relativity.
It is argued that the outcome of the gravitational holographic process, which is
the additional curving of the relevant spacetime region compared to neighbouring
regions may be considered as if the spacetime geometry of the passing GW was
implanted upon this spacetime region. Thus, this finite spacetime region which
carry the geometry of the passing GW may be thought of as a surface formed by
this GW which corresponds to the trapped surfaces (Eppley, 1977; Brill, 1959,
1964; Brill and Hartle, 1964; Alcubierre et al., 2000; Gentle et al., 1998; Gentle,
1999; Miyama, 1981) which are also; (1) imprinted upon spacetime by passing
GW’s and (2) carry the same spacetime geometry as that of the generating GW’s.
Moreover, this correspondence is more emphasized by noting that it has already
been found (Tipler, 1980; Urtsever, 1988a,b) that the collision between two plane
GW’s results in the overall strenghtening of them (Tipler, 1980; Urtsever, 1988a,b)
(corresponds to constructive interference) and the formation of a singularity, which
is generally surrounded by a surface, in the involved region.

Now, although these trapped surfaces are generally discussed in the literature
(Eppley, 1977; Alcubierre et al., 2000; Gentle et al., 1998; Gentle, 1999; Miyama,
1981; Beig and Murchadha, 1991; Abrahams and Evans, 1992) as formed from
strong GW’s which do not conform to the linearized version of general relativity
and the resulting weak GW’s discussed here it should be noted, as mentioned,
that we only discuss here the situation in the presence of these GW’s. That is,
as already emphasized in Alcubierre et al. (2000); Gentle et al. (1998); Gentle
(1999); Miyama (1981), weak GW’s do not leave any impression upon the rele-
vant spacetime region after passing and disappearing from it but they obviously
influence this finite region during their presence in it. Thus, although the GW’s,
including the weak ones, move with the velocity c of light one may discuss ei-
ther the situation at the very instant at which this wave passes this region or
the situation at which a large number of similar waves are passing one after the
other through this region. Moreover, we discuss here the constructive interfer-
ence of two GW’s which have a larger influence upon spacetime compared to
that of the single one. And indeed it is shown here that these GW’s does form
during their presence in the relevant spacetime region a trapped surface which,
as mentioned, remains and stays so long as the forming waves does not disappear
from it.
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We note that unlike the EM holographic images which are 3-D surfaces seen
by the naked eye and so may be directly discussed in observational terms such as
length, distance, intensity etc the gravitational holographic images, actually, denote
changes of spacetime curvature and topology (Finkelstein and Rodriguez, 1984;
Sorkin, 1986) which can not be directly observed and measured (see discussion
in Bar, 2005). Moreover, the efforts to experimentally detect (Abbott et al., 2004;
Acernese et al., 2002; Danzmann et al., 1995; Ando and the TAMA collaboration,
2002) GW’s did not succeed thus far. However, this does not prevent us to use
the equivalence principle (Misner et al., 1973; Bergmann, 1976) and describe any
physical event in terms of either curved spacetime in vacuum without resorting
to any physical interactions or in terms of physical particles subjected to physical
correlations and forces in otherwise flat spacetime.

In order to illustrate our meaning we refer to the linearized GW discussed
here and in Bar (2005) which changes spacetime curvature in the region passed
by it so that, as shown in Fig. 1, n test particles (TP) arrayed in circular form is
transformed to an elliptic one. This process may be discussed from the point of
view of curved spacetime so that the n particles are represented by n Einstein-
Rosen bridges (Einstein and Rosen, 1935) each of them is surrounded by an
intrinsic trapped (minimal) surface (Eppley, 1977; Brill, 1959, 1964; Brill and
Hartle, 1964). And their being now in locations in which they are generally closer
to each other (as in an ellipse array) is described by an additional trapped surface
(Brill, 1959, 1964; Brill and Hartle, 1964) (the n + 1-st one) which connect all
the n Einstein-Rosen bridges. One may alternatively describe this process by
saying that n physical particles, which are always situated in flat spacetime, have
undergone some physical correlation which changes their initial spatial array
from a circular form to an elliptic one.

APPENDIX A: THE LINEARIZED GRAVITATIONAL WAVE

In this appendix we refer to a TP which fall freely along the geodesic A and
watches another TP falling freely along a neighbouring geodesic B. Referring to
the general case of a coordinate system in which the basis eβ changes arbitrarily
but smoothly from point to point and denoting the tangent vector to the geodesic

ˆG(n, τ ) as u = ∂ ˆG(n,τ )
∂τ

one may write the velocity of the TP along B relative to
that along A as

∇un = (nβ ;γ uγ )eβ (A.1)

nβ ;γ is the covariant derivative of nβ given by Misner et al. (1973); Bergmann
(1976)

nβ ;γ = dnβ

dxγ
+ �β

µγ nµ, (A.2)



Gravitational Holography and Trapped Surfaces 683

where

�β
µγ = gνβ�νµγ = 1

2
gνβ(gνµ,γ + gνγ,ν − gµγ,ν) (A.3)

The expression between the circular parentheses in (A.1) represents the compo-
nents of ∇un and is denoted by Dnβ

dτ
. Thus, using Eq. (A.1) one may write (Misner

et al., 1973)

Dnβ

dτ
= nβ ;γ uγ = dnβ

dγ
+ �β

µγ nµ dxγ

dτ
(A.4)

The acceleration of the TP along B relative to that along A is (Misner et al., 1973)

∇u(∇un) = −R, (A.5)

where R is the Riemann curvature tensor given in component form as (Misner et
al., 1973; Bergmann, 1976)

Rα
βγ δ = ∂�α

βδ

∂xγ
− ∂�α

βγ

∂xδ
+ �α

µγ �
µ
βδ − �α

µδ�
µ
βγ (A.6)

Equation (A.5) may be written in component form as (Misner et al., 1973)

D2nα

dτ 2
= −Rα

βγ δu
βuδnγ (A.7)

Now, returning to the local Lorentz frame represented by the metric (4) one may
realize that since, as mentioned, x0 = τ on the world line xj = 0 of A the relation
(A.7) reduces to the much simplified form

D2nj

dτ 2
= −R

j

0k0n
k = −Rj0k0n

k (A.8)

We note that the transverse trace-free (TT) coordinate system may move, to first
order in the metric perturbation hT T

jk , with TP A and with its proper reference
frame. Thus, to first order in hT T

jk , one may identify the time t in the coordinate
system TT with the proper time τ of the TP A so as to have RT T

j0k0 = Rj0k0. In the
last equality the Rj0k0 at the right is calculated in the proper reference frame of
A and that at the left is calculated in the TT coordinate system where it has been
shown (see Eq. (35.10) in Misner et al. (1973)) to assume the very simple form of

Rj0k0 = −1

2
hT T

jk,00 (A.9)

One may notice that since the TT coordinate system moves with the proper
reference frame of TP A they are both denoted by the same indices (0, k, j )
without having to use primed and unprimed indices. Note that since the origin is
attached to A’s geodesic the components of the separating vector n are, actually,
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the coordinates of B. That is, denoting the coordinates of A and B by x
j

A and x
j

B
respectively one may write nj = x

j

B − x
j

A = x
j

B − 0 = x
j

B. One may also notice
that at xj = 0 the connection coefficients �

µ
αβ satisfy �

µ
αβ = 0 for all x0. This

entails also the vanishing of
d�

µ
αβ

dτ
thereby the covariant derivative D2nj

dτ 2 becomes
ordinary derivative and, using Eq. (A.9), one may write Eq. (A.8) as

d2x
j

B
dτ 2

= −Rj0k0x
k
B = 1

2

(
∂2hT T

jk

∂t2

)
xk
B (A.10)

We choose the initial condition that the test particles at A and B were at rest before
the wave arrives, that is, x

j

B = x
j

B(0) when hT T
jk = 0. In this case the solution of

Eq. (A.10) is

x
j

B(τ ) = xk
B(0)

(
δjk + 1

2
hT T

jk

)
atA

, (A.11)

which represents the change in B’s place due to the passing wave as calculated in
the proper reference frame of A. The hT T

jk at the right hand side of the last equation
represents the perturbation caused by advancing gravitational wave which may be
assumed to have any form. One may choose any general waveform which may
analytically expressed as an infinite expansion of scalar, vector or tensor spherical
harmonics (Thorne, 1980b) or one may prefer an exact plane gravitational wave
(see Section 35.9 in Misner et al. (1973)).

APPENDIX B: THE EM TRAPPED SURFACE

As emphasized in Misner et al. (1973), (see pp. 961–962 there), the EM plane
wave equation “has exactly the form of the equation for the gravitational plane
wave” and “in the limit of very small wavelength the two solutions are completely
indistinguishable. Their metrics are identical” etc. Thus, in this limit one may use
the former process of finding the geometry of the gravitational trapped surface for
calculating the corresponding surface related to EM waves. We should only take
into account that an EM wave advancing along the z direction is characterized by
the unit polarization vectors ex̂, eŷ. Thus, as in Eq. (18), one may write the EM
metric components hEM

x̂x̂ , hEM
ŷŷ as

hEM
x̂x̂ = �(

Axex̂e
−if t eikrẑ) = Axex̂ · cos(kz − f t)

hEM
ŷŷ = �(

Ayeŷe
−if t eikrẑ) = Ayeŷ · cos(kz − f t), (B.1)

where Ax , Ay are the x and y amplitudes of the EM wave which are considered
to be equal as the corresponding xx and yy components of the amplitude A+ (see
pp. 952–953 in Misner et al. (1973)). Using the last equation one may write the
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metric in the (x̂, ŷ, ẑ) coordinate system as

(dsEM )2
(x̂,ŷ,ẑ) = hEM

x̂x̂ dx2 + hEM
ŷŷ dy2 = Ax cos(kz − f t)(ex̂dx2 + eŷdy2) (B.2)

Using the transformation relations x = ρ cos(φ), y = ρ sin(φ), z = z, ex̂ =
cos(φ)eρ̂ − sin(φ)eφ̂ , eŷ = sin(φ)eρ̂ + cos(φ)eφ̂ , eẑ = eẑ, we first express the
metric from Eq. (B.2) in the cylindrical coordinate system (ρ̂, φ̂, ẑ) and use,
as for the gravitational case (see the discussion after Eq. (21)), the no-rotation
assumption for which hEM

ρ̂φ̂
dρdφ is identically zero so that

(dsEM )2
(ρ̂,φ̂,ẑ) = hEM

ρ̂ρ̂ dρ2 + hEM

φ̂φ̂
dφ2 = Aρ,φ cos(kz − f t)

×[{(cos3(φ) + sin3(φ))eρ̂ + (sin2(φ) cos(φ)

− cos2(φ) sin(φ))eφ̂}dρ2 + {(sin2(φ) cos(φ)

+ cos2(φ) sin(φ))eρ̂ + (cos3(φ) − sin3(φ))eφ̂}ρ2dφ2]

(B.3)

Using again, as in Eq. (23), the relations x = a(ρ) cos(φ), y = a(ρ) sin(φ), z =
b(ρ) one may write the metric as

(dsEM )2 = dx2 + dy2 + dz2 = (a2(ρ)ρ + b2(ρ)ρ)dρ2 + a2(ρ)dφ2

= hEM
ρ̂ρ̂ d2ρ + hEM

φ̂φ̂
d2φ = cos(kz − f t)

×[{(cos3(φ) + sin3(φ))eρ̂ + (sin2(φ) cos(φ) − cos2(φ) sin(φ))eφ̂}
× dρ2 + {(sin2(φ) cos(φ) + cos2(φ) sin(φ))eρ̂ + (cos3(φ)

− sin3(φ))eφ̂}ρ2dφ2]

(B.4)

The appropriate expressions a(ρ), a(ρ)ρ, b(ρ) which determine the geometry of
the relevant trapped surface are obtained from Eq. (B.4) as

a(ρ) = ρ[cos(kz − f t){(sin2(φ) cos(φ) + cos2(φ) sin(φ))eρ̂

+ (cos3(φ) − sin3(φ))eφ̂}] 1
2

a(ρ)ρ = [cos(kz − f t){(sin2(φ) cos(φ) + cos2(φ) sin(φ))eρ̂

+ (cos3(φ) − sin3(φ))eφ̂}] 1
2

b(ρ) =
∫

dρ[cos(kz − f t){(cos3(φ) + sin3(φ))eρ̂

+ (sin2(φ) cos(φ) − cos2(φ) sin(φ))eφ̂} − a2(ρ)ρ]
1
2 (B.5)



686 Bar

REFERENCES

Abbott, B. et al. (2004). Analysis of first LIGO science data for stochastic gravitational waves, Physical
Review D 69, 122004.

Abrahams, A. M. and Evans, C. R. (1992). Trapping a geon: Black hole formation by an imploding
gravitational wave, Physical Review D 46, R4117.

Acernese, F. et al. (2002). Status of VIRGO, Classical Quantum Gravity 19, 1421.
Alcubierre, M., Allen, G., Brugmann, B., Lanfermann, G., Seidel, E., Suen, W. M., and Tobias, M.

(2000). Gravitational collapse of gravitational waves in 3-D numerical relativity, Physical Review
D 61, 041501.

Ando, M. and the TAMA collaboration (2002). Current status of TAMA, Classical Quantum Gravity
19, 1409.

Anninos, P., Masso, J., Seidel, E., Suen, W. M., and Tobias, M. (1997). Dynamics of gravitational
waves in 3D: Formulations, methods and tests, Physical Review D 56, 842.

Arnowitt, R., Desser, S., and Misner, C. W. (1962). The dynamics of General Relativity, In: Gravitation:
An Introduction to Current Research, Witten, L. (ed.), Wiley, New-York.

Bar, D. (2005). The gravitational wave holography, gr-qc/0509052, to be published in IJTP.
Beig, R. and Murchadha, N. O. (1991). Trapped surfaces due to concentration of gravitational radiation,

Physical Review Letters 66, 2421.
Bergmann, P. G. (1976). Introduction to the Theory of Relativity, Dover, New York.
Bernstein, D., Hobill, D., Seidel, E., and Smarr, L. (1994). Initial data for the black hole plus Brill

wave spacetime, Physical Review D 50, 3760.
Brill, D. and Lindquist, R. W. (1963). Interaction energy in Geometrodynamics, Physical Review 131,

471–476.
Brill, D. R. (1959). On the positive definite mass of the Bondi-Weber-Wheeler time-symmetric gravi-

tational waves, Annals of Physics 7, 466.
Brill, D. R. (1964). Suppl. Nuovo. Cimento 2, 1–56.
Brill, D. R. and Hartle, J. B. (1964). Method of the self-consistent field in General Relativity and its

application to the gravitational geon, Physical Review B 135, 271.
Collier, R. J., Burckhardt, C. B., and Lin, L.H. (1971). Optical Holography, Academic Press.
Danzmann, K. (1995). GEO-600 a 600-m laser interferometric gravitational wave antenna, In First

Edoardo Amaldi Conference on Gravitational Wave Experiments, Coccia, E., Pizella, G., and
Ronga, F., (eds.), World Scientific, Singapore.

Einstein, A. and Rosen, N. (1935). The particle problem in the general theory of relativity, Physical
Review 48, 73.

Eppley, K. (1977). Evolution of time-symmetric gravitational waves: Initial data and apparent horizons,
Physical Review D 16, 1609.

Finkelstein, D. and Rodriguez, E. (1984). Relativity of topology and dynamics, International Journal
of Theoretical Physics 23, 1065–1098.

Gabor, D. (1948). A new microscopic Principle, Nature 161, 777.
Gabor, D. (1949). Microscopy by reconstructed wavefronts, Proceedings of the Royal Society A 197,

454.
Gabor, D. (1951). Microscopy by reconstructed wavefronts: II, Proceedings of the Royal Society B 64,

449.
Gentle, A. P. (1999). Simplical Brill wave initial data, gr-qc/9901071.
Gentle, A. P., Holz, D. E., and Miller, W. A. (1998). Apparent horizons in simplical Brill wave initial

data, gr-qc/9812057.
Hawking, S. W. and Ellis, G. F. R. (1973). The Large Scale Structure of Spacetime, Cambridge, London.
Kuchar, K. (1970). Ground state functional of the linearized gravitational field, Journal of Mathematical

Physics 11, 3322.



Gravitational Holography and Trapped Surfaces 687

Kuchar, K. (1971). Canonical quantization of cylindrical gravitational waves, Physical Review D 4,
955.

Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Freeman, San Francisco.
Miyama, S. M. (1981). Time evolution of pure gravitational wave, Progress in Theoretical Physics 65,

894.
Nakamura, T. (1984). General solutions of the linearized Einstein equations and initial data for 3-D

time evolution of pure gravitational waves, Progress in Theoretical Physics 72, 746.
Sorkin, R. D. (1986). Topology change and monopole creation, Physical Review D 33, 978.
Spiegel, M. R. (1959). Vector Analysis, Schaum’s Outline Series, McGraw-hill, New-York.
Thorne, K. S. (1980a). Gravitational wave research: Current status and future prospect, Reviews of

Modern Physics 52, 285.
Thorne, K. S. (1980b). Multipole expansions of gravitational radiation, Reviews of Modern Physics

52, 299.
Tipler, F. J. (1980). Singularities from colliding plane gravitational waves, Physical Review D 22, 2929.
Urtsever, U. (1988a). Singularities in the collisions of almost-plane gravitational waves, Physical

Review D 38, 1731.
Urtsever, U. (1988b). Colliding almost-plane gravitational waves: Colliding plane waves and general

properties of almost-plane wave spacetimes, Physical Review D 37, 2803.
Urtsever, U. (1989). Quantum field theory in a colliding plane-wave background, Physical Review D

40, 360.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


